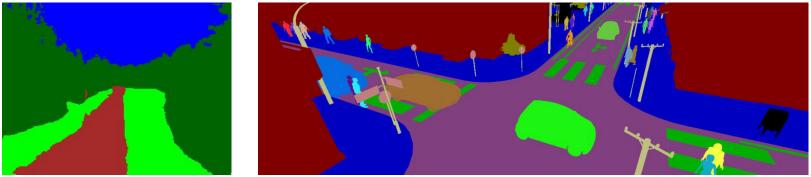
Adaptive Fusion using Convoluted Mixture of Deep Experts for Robust Semantic Segmentation

Ankit Dhall

Supervisors: Abhinav Valada and Wolfram Burgard

Scene Understanding and Segmentation

- Understand dynamic unstructured environments
- Maps for off-roads change frequently
- Changing foliage and seasons, conditions
- Build robotics applications like navigation on top



Source: Synthia dataset

Motivation for Fusion with Probabilities

Prone to low-lighting, snow, glare and motion blur
Changing conditions over time
Overcome modality weaknesses

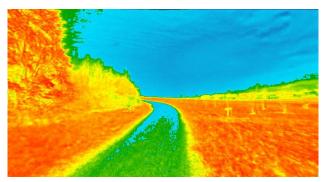
Motivation for Fusion with Probabilities

Source: KITTI dataset

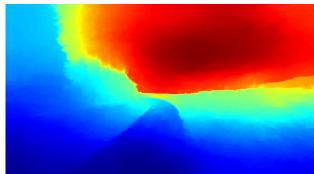
- Prone to low-lighting, snow, glare and motion blur
- Changing conditions over time
- Overcome modality weaknesses

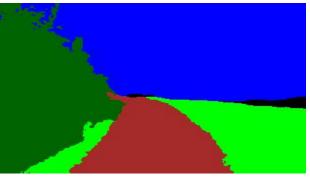
Freiburg Multi-spectral Forest Dataset (ISER'16)

RGB



EVI (Enhanced vegetation index)

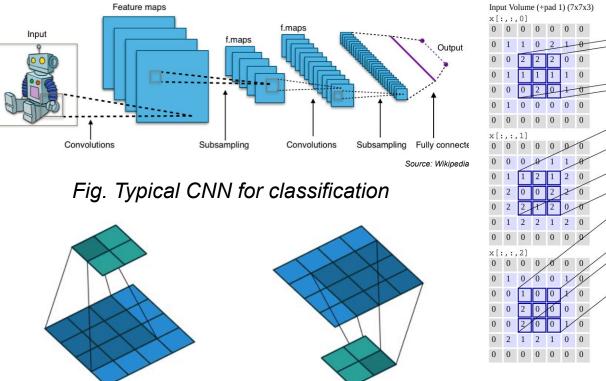


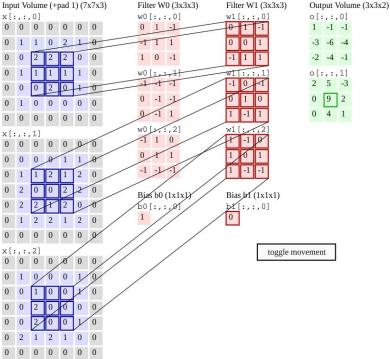


Segmentation output

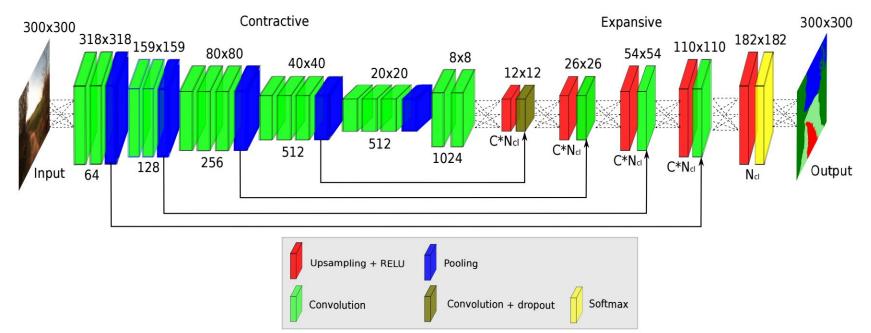
Depth

What is a Convolutional Neural Networks (CNN)?





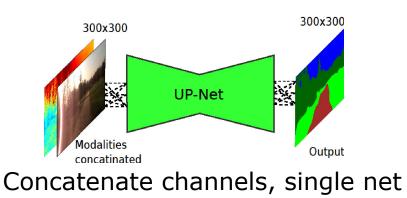
Network Architecture: FCN Experts

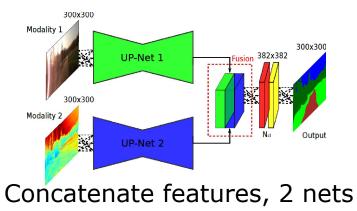


Each expert is trained exclusively on a particular modality and in parallel with other experts using the UpNet (Oliveira et al.) FCN (fully-convolutional net) architecture

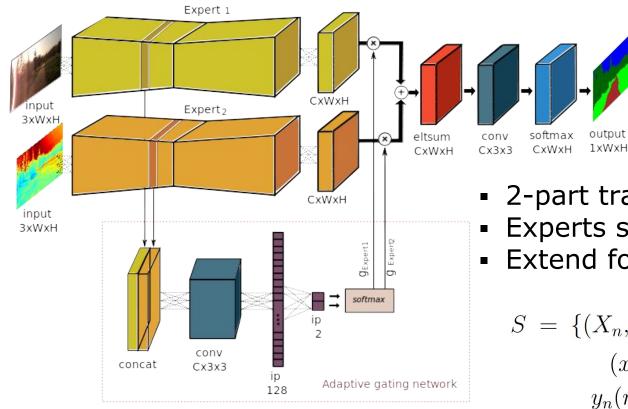
Previous Approaches: Learning to Fuse

Most convenient: concatenate channels, single net
Problem: vanishing gradients
Concatenate or sum individual network features
Problem: learning on outputs of weak modalities





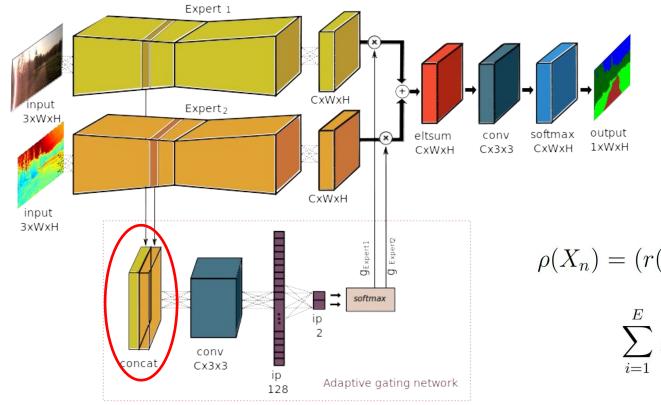
Learning Distributions before Fusion



- 2-part training
- Experts shown exclusive data
- Extend for arbitrary experts

$$S = \{ (X_n, y_n), n = 1, 2, \dots, N \}$$
$$(x_1, x_2, \dots, x_E)$$
$$y_n(r, c) \in \{ 0, 1, \dots, C \}$$

Input Representations

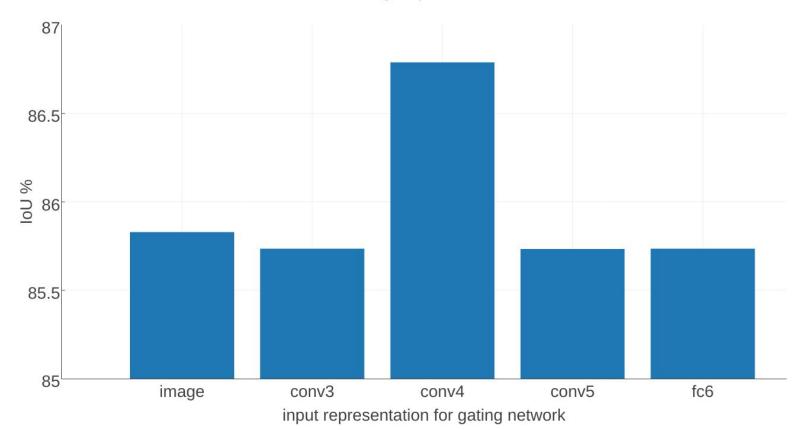


$$\rho(X_n) = (r(x_1), r(x_2), \dots, r(x_E))$$

$$\sum_{i=1}^{E} g_{i}(\rho(X_{n})) \cdot h_{i}(x_{i})$$

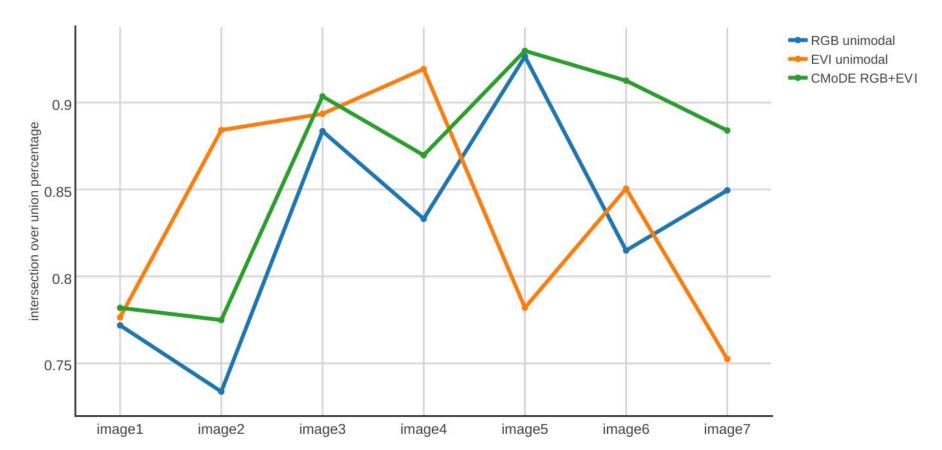
Experiments – Input Representations

Choosing representations

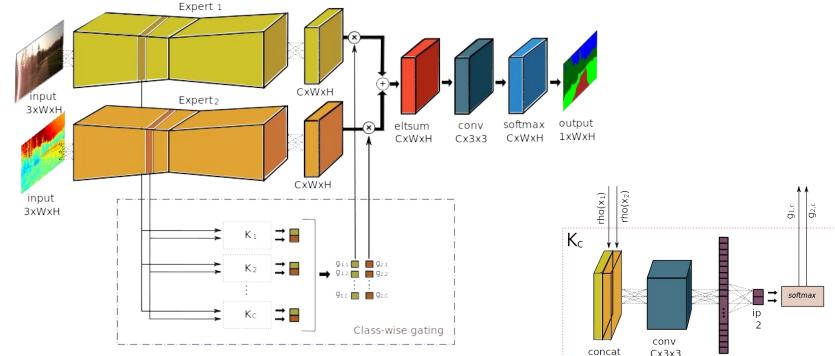


Fused Using Probabilities is Better

CMoDE versus unimodal networks

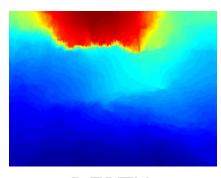


Gating Network for C-classes



ip 128 Adaptive gating network

Gating Network for C-classes



RGB

DEPTH

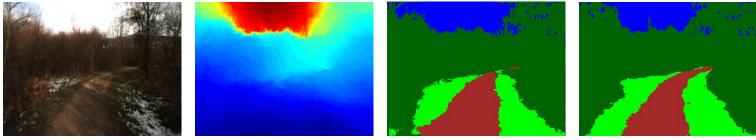
CMoDE

	RGB	DEPTH
Sky	0.44	0.56
Road	0.80	0.20

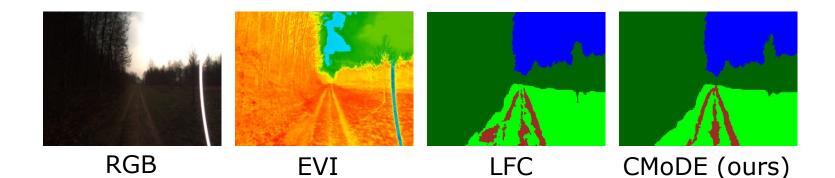
Results and Observations

- •A CMoDE of RGB and EVI gives an IoU of 86.97%
- A CMoDE with RGB and Depth gives an IoU of 86.79%,
 2.75% points higher than the previous best
- •The gating prefers the EVI expert when RGB images contain glare, snow or low-light
- A CMoDE performs better than 50-50 fusion ratio, concatenation of channels and element-wise sum(Late Fused Convolution)

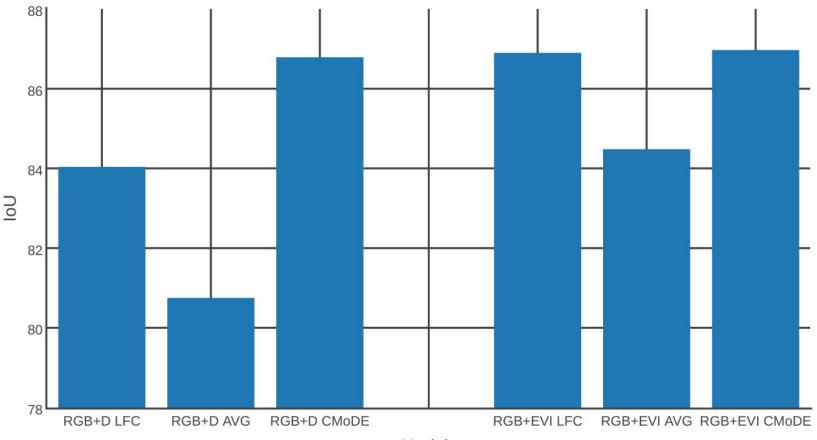
Comparison with State-of-the-art(LFC)



RGB

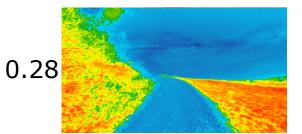


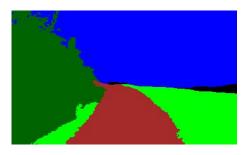
Comparison with State-of-the-art(LFC)

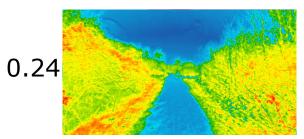


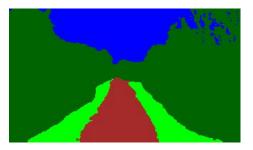
Models

Results – CMoDE RGB+EVI



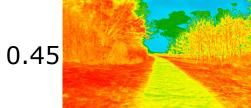


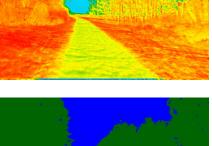


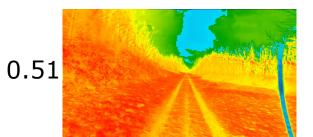


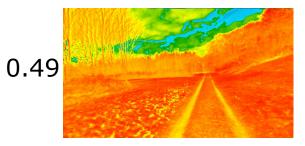
0.25

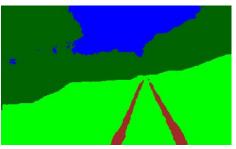
Results – CMoDE RGB+EVI











Experiment with VIONA

Used segmentation to determine traversable terrain
Provide waypoints to the planner
DCNN runs as a ROS node on TX1

Conclusions

- Merge networks with probability distribution
- •More competitive experts form a better mixture
- •Using blurred and noisy images helps to generalize
- Overcome weaknesses use complementary modality
- •Extend models to produce per-class probabilities
- Performs state-of-the-art segmentation on the Freiburg multi-spectral forest dataset
- Significantly increase learnable parameters by using parallel networks without causing computational burden

Future work

- Training on Cityscapes and Synthia datasets
- Currently working to create uncertainty using dropout
- Improve speed by adding convolutions before inner products
- Train experts for seasons and pass same inputs, fusing using the adaptive gating

Thank you for your attention!

Live demo with VIONA

