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Scene Understanding and Segmentation

=Understand dynamic unstructured environments
=Maps for off-roads change frequently

Changing foliage and seasons, conditions

«Build robotics applications like navigation on top




Motivation for Fusion with Probabilities

Prone to low-lighting, snow, glare and motion blur
Changing conditions over time
=Overcome modality weaknesses
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Prone to low-lighting, snow, glare and motion blur
Changing conditions over time
=Overcome modality weaknesses



Freiburg Multi-spectral Forest Dataset (ISER'16)
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RGB EVI (Enhanced vegetation index)

Segmentation output



What is a Convolutional Neural Networks (CNN)?
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Network Architecture: FCN Experts
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Each expert is trained exclusively on a particular modality
and in parallel with other experts using the UpNet (Oliveira
et al.) FCN (fully-convolutional net) architecture



Previous Approaches: Learning to Fuse

=Most convenient: concatenate channels, single net
Problem: vanishing gradients

=Concatenate or sum individual network features
Problem: learning on outputs of weak modalities
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Concatenate channels, single net Concatenate features, 2 nets



Learning Distributions before Fusion
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Input Representations
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Experiments - Input Representations

Choosing representations
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Fused Using Probabilities is Better

CMoDE versus unimodal networks
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Gating Network for C-classes
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Gating Network for C-classes

RGB DEPTH ~ CMoDE
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Results and Observations

A CMoDE of RGB and EVI gives an IoU of 86.97%

A CMoDE with RGB and Depth gives an IoU of 86.79%,
2.75% points higher than the previous best

=The gating prefers the EVI expert when RGB images
contain glare, snow or low-light

A CMoDE performs better than 50-50 fusion ratio,
concatenation of channels and element-wise sum(Late
Fused Convolution)



Comparison with State-of-the-art(LFC)
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Comparison with State-of-the-art(LFC)
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Results - CMoDE RGB+EVI




Results - CMoDE RGB+EVI




Experiment with VIONA

Used segmentation to determine traversable terrain
Provide waypoints to the planner
=DCNN runs as a ROS node on TX1



Conclusions

Merge networks with probability distribution

=More competitive experts form a better mixture
=Using blurred and noisy images helps to generalize
Overcome weaknesses— use complementary modality
Extend models to produce per-class probabilities

Performs state-of-the-art segmentation on the Freiburg
multi-spectral forest dataset

=Significantly increase learnable parameters by using
parallel networks without causing computational burden



Future work

=Training on Cityscapes and Synthia datasets
«Currently working to create uncertainty using dropout
-Improve speed by adding convolutions before inner products

=Train experts for seasons and pass same inputs, fusing using
the adaptive gating



Thank you for your attention!



Live demo with VIONA
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Thing 2
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