Learning Representations for Images with Hierarchical Labels

Ankit Dhall October 2, 2019

> Supervised by: Prof. Andreas Krause Anastasia Makarova, Octavian-Eugen Ganea, Dario Pavllo

- 47,978 butterfly images with a 4-level label-hierarchy
- 6 family -> 21 sub-family -> 135 genus -> 561 species

Papilionidae Papilioninae Papilio Papilio machaon Nymphalidae Limenitidinae Neptis Neptis rivularis

Nymphalidae Nymphalinae Nymphalis Nymphalis polychloros

Motivation

• Leveraging both label-label and label-image information for classification

Motivation

- Leveraging both label-label and label-image information for classification
- Sharing information between images from unbalanced data

Motivation

- Leveraging both label-label and label-image information for classification
- Sharing information between images from unbalanced data
- Jointly infer visual cues (from images) and semantics (from label-hierarchy)

Related Work

• Embedding-based models for language (Euclidean + non-Euclidean)

** Hyperbolic Entailment Cones; OE Ganea, G Bécigneul, T Hofmann

+ Hyperbolic Disk Embeddings for Directed Acyclic Graphs; R Suzuki, R Takahama, S Onoda

Related Work

- Embedding-based models for **language** (Euclidean + non-Euclidean)
- Embedding-based models for images
 - Image-captioning and retrieval*
 - Zero-shot learning**
 - Hyperbolic image embeddings ⁺

- * VSE++: Improving Visual-Semantic Embeddings with Hard Negatives; F Faghri, et al.
- ** DeViSE: A Deep Visual-Semantic Embedding Model; A Frome, et al.
- + Hyperbolic Image Embeddings, V Khrulkov, et al. (image source)

Related Work

- Embedding-based models for **language** (Euclidean + non-Euclidean)
- Embedding-based models for images
- Convolutional Neural Networks based models (modified CNN architectures)
 - Attention-based models*
 - \circ Predict labels for each level with a separate neural-network ⁺

^{*} See Better Before Looking Closer; T Hu, et al.

⁺ Fine-Grained Representation Learning and Recognition by Exploiting Hierarchical Semantic Embedding, T Chen, et al.

Methods: Injecting Label-hierarchy into CNN Classifiers

Injecting Label-hierarchy into CNN Classifiers

- Hierarchy-agnostic classifier
- Per-level classifier
- Masked Per-level classifier
- Marginalization
- Hierarchical softmax

These methods provide hierarchical information at different levels of abstraction

Experimental Setup

- Input: 224 x 224 RGB image
- Output: predicted logits for each level $\mathcal{F}(\mathcal{I}) = x = \{x_1, x_2, x_3, x_4\}$ $x_i \in \mathbb{R}^{N_i}$,
- Ground-truth: 4 x labels (*family*, *subfamily*, *genus*, *species*) $y = \{y_1, y_2, y_3, y_4\}$

$$y_1 \in [0, N_{\text{family}} - 1], y_2 \in [0, N_{\text{subfamily}} - 1], y_3 \in [0, N_{\text{genus}} - 1], y_4 \in [0, N_{\text{species}} - 1]$$

Loss computation:

$$\mathscr{L}(x,y) = \sum_{i=1}^{L=4} \mathscr{L}_i(x_i,y_i)$$

Cross-entropy for classifying each level

Metrics:

- Precision, recall and F1-score for each label
- Micro and Macro averaged global scores

example:

$$\text{M-Precision} = \frac{1}{N} \sum_{j=1}^{N} \text{Precision}(\text{label}_j)$$

$$\text{m-Precision} = \frac{\sum_{j=1}^{N} \text{TP}(\text{label}_j)}{\sum_{j=1}^{N} \text{TP}(\text{label}_j) + \sum_{j=1}^{N} \text{FP}(\text{label}_j)}$$

Hierarchy-agnostic Classifier

- Indifferent to the presence of label-hierarchy
- Multi-label classifier: can predict as many label as it likes

Per-level Classifier

• Exploits: number of levels in the label-hierarchy

Masked Per-level Classifier

- Exploits: sub-tree relation + number of levels in label-hierarchy
- Use CNN prediction to mask implausible nodes down the hierarchy

Marginalization

- Exploits: parent-child relationship
- Upper levels by summing over children.

$$\mathscr{L}(x,y) = \sum_{i=1}^{L} \mathscr{L}_i(x_i, y_i) = -\sum_{i=1}^{L} \log(p_i[y_i])$$
$$p_L[j] = P(v_L^j | \mathcal{I}) = \left(\frac{\exp(x_j)}{\sum_{k=1}^{N_L} \exp(x_k)}\right)$$

Hierarchical Softmax

• Exploits: sub-tree relation + number of levels in label-hierarchy

Experiments: Injecting Label-hierarchy into CNN Classifiers

Experiments

	micro-F1
Hierarchy-agnostic classifier	0.8147
Per-level classifier	0.9084
Masked Per-level classifier	0.9173
Marginalization	0.9223
Hierarchical softmax	0.9180

Model performance on *test* set for image classification on the ETHEC dataset.

m-F1	m-F1 L ₁	m-F1 <i>L</i> ₂	m-F1 <i>L</i> ₃	m-F1 <i>L</i> ₄					
		Per-level micro-F1							
0.9223	0.9887	0.9758	0.9273	0.7972					

Level-wise micro-F1 for the best performing baseline (Marginalization model).

Learning Joint-Embeddings For Image Classification

Order-preserving Embeddings

- Order-Embeddings
- Euclidean Cones
- Hyperbolic Cones

Order Embeddings* and Entailment Cones**

- (1) For embedding label-hierarchy only:
 - Treat the label-hierarchy as a directed acyclic graph (DAG)
 - A directed edge (u, v) symbolizes that v is a sub-concept of u
- (2) For embedding images and labels jointly:
- Connect the image to the label associated with it
 from the last level in the label-hierarchy

Use the joint-embeddings for image classification

Images form the <u>leaves</u> as upper nodes are more abstract

^{*} Order-Embeddings; I Vendrov, R Kiros, S Fidler, R Urtasun

^{**} Hyperbolic Entailment Cones; OE Ganea, G Bécigneul, T Hofmann

Experimental Setup

- Input: +ve and -ve edges from the DAG
- Output: if given pair of concepts (u, v) have a directed edge in the DAG; classify (u, v) as +ve or -ve

Loss:

$$\mathcal{L}(P,N) = \sum_{(u,v)\in P} E(u,v) + \sum_{(u',v')\in N} \max(0,\gamma - E(u',v'))$$

E is an energy function. *P* and *N* are +ve and -ve edges -ve concepts should be separated by a margin

Metrics:

- True positive rate (TPR) and True negative rate (TNR)
- full-F1 score: F1 score on all +ve and -ve edges in the DAG => check reconstruction capability

Order Embeddings and Entailment Cones

For a given pair of concepts, (u, v), if u entails v then u falls within the quadrant that originates at u.

$$E(u, v) := |\max(0, v - u)||^2$$

For a given pair of concepts, (u, v), if u entails v then u falls within the cone that originates at u.

 $E(u,v) := \max(0, \Xi(u,v) - \psi(u))$

Performance: Order-preserving Embeddings

Label-hierarchy only

Label-hierarchy with Images

Embedding Labels | Order Embeddings

Embedding Labels | Order Embeddings

Evolution of 2-dimensional Order Embeddings for ETHEC dataset (for labels only) over time. The metrics above are computed by classifying (distinguishing between) all positive and negative relations in the hierarchy.²⁸

Embedding Labels | Euclidean Cones

2-dimensional Euclidean cones for the ETHEC dataset in R² embedding space (for labels only).

Embedding Labels | Euclidean Cones

Evolution of 2-dimensional Euclidean Cones for the ETHEC dataset (for labels only) over time. The metrics above are computed by classifying (distinguishing between) all positive and negative relations in the hierarchy.³⁰

Hyperbolic Cones

Image source: http://prior.sigchi.org

Volume of d-dimensional ball Euclidean: $V_d^{\mathbb{E}}(r) \propto r^d$ Hyperbolic: $V_d^{\mathbb{H}}(r) \propto e^r$

Nodes in a tree with height hand branching factor bnum_nodes_b(h) $\propto b^h$

- Move away from model parameters that assumes Euclidean geometry
- Embeddings live in hyperbolic space and exploit hyperbolic geometry
- Embed tree structure in Hyperbolic space with low-distortion*

Optimization in Hyperbolic Space ⁺

Gradient descent with Euclidean gradient in Euclidean space,

$$u \leftarrow u - \eta \ \nabla_u \mathscr{L}$$

Riemannian Gradient for parameters living in non-Euclidean space,

$$\nabla_{u}^{R} \mathscr{L} = (1/\lambda_{u})^{2} \nabla_{u} \mathscr{L} \qquad \lambda_{u} = 2/(1-||u||^{2})$$

Riemannian Gradient Descent using exponential map,

$$u \leftarrow \exp_u(\eta \ \nabla_u^R \mathscr{L})$$

$$\exp_x(v): T_x \mathbb{D}^n \to \mathbb{D}^n$$

Performance | Embedding labels only

	d=2	d=100	d=1000
	TPR/ TNR/ (full-F1)	TPR/ TNR/ (full-F1)	TPR/ TNR/ (full-F1)
OE	0.2309 / 0.9708 / (0.1372)	0.4686 / 0.9880 / (0.3894)	0.3788 / 0.9878 / (0.3489)
EC	0.3617 / 0.9975 / (0.3573)	0.4802 / 0.9985 / (0.4151)	0.5790 / 0.9973 / (0.4091)
HC	0.4443 / 0.9907 / (0.2296)	0.9336 / 0.9986 / (0.8060)	0.9721 / 0.9986 / (0.8257)

d=number of dimensions of embedding space

OE: Order-embeddings, EC: Euclidean cones, HC: Hyperbolic cones

- True positive rate and true negative rate on all +ve and -ve edges from DAG
- DAG represents label-hierarchy in the ETHEC dataset
- Also report F1 score on classifying **all** edges
- 723 +ve edges; 521,289 -ve edges

Label-hierarchy only

Label-hierarchy with Images

Jointly Embedding Images and Label-hierarchy

 $\begin{array}{c|c} \arg \min_{l} E(g_{l}(l), f_{i}(i)), \forall l \in labels \\ \hline \\ Return \ label \ with \\ least-violating \ energy \ E \\ Label-embedding \\ \hline \\ \\ Label-embedding \\ \hline \\ \\ \end{array}$

Loss:

$$\mathcal{L}(P,N) = \sum_{(u,v)\in P} E(u,v) + \sum_{(u',v')\in N} \max(0,\gamma - E(u',v'))$$

Perform same optimization as before,

 $(u, v) := (g_l(l), f_i(i))$

Optimize using Adam to learn W and label embeddings, $f_l(l)$

Extremely challenging to optimize!

- Highly non-convex non-Euclidean landscape
- 2 different types of objects: images & labels
- Riemannian optimizer is accurate but weak!
- Hard to manage Adam & RSGD together
- Adam with approximation works best

Jointly Embedding Images and Label-hierarchy

Visualization of labels and images in joint 2D embedding space using Euclidean Cones. The nodes on the periphery are images.

Jointly Embedding Images and Label-hierarchy

	classify	test set	t images		graph	reconstr	uction
Model	m-F1	hit@3	hit@5		TPR	TNR	full-F1
		Eucl	idean Co)1	ies		
d=10	0.7795	0.8893	0.9204		0.8045	0.9982	0.7040
d=100	0.8350	0.9018	0.9425		0.9630	0.9986	0.8210
d=1000	0.8013	0.8971	0.9278		0.8146	0.9981	0.7073
		Нуре	erbolic Co	0	nes		
d=100	0.8404	0.9200	0.9386		0.6418	0.9978	0.5756
d=1000	0.8045	0.9023	0.9281		0.5233	0.9973	0.4832

Classification performance directly comparable with the CNN-based image classifiers!

Performance Summary

Models that use label-hierarchy information outperform the hierarchy-agnostic model.

			Per-level	micro-F1	
Model	m-F1	m-F1 <i>L</i> ₁	m-F1 <i>L</i> ₂	m-F1 <i>L</i> ₃	m-F1 <i>L</i> ₄
(ed methods	5			
Hierarchy-agnostic (baseline)	0.8147	0.9417	0.9446	0.8311	0.4578
Per-level classifier	0.9084	0.9766	0.9661	0.9204	0.7704
Marginalization classifier	0.9223	<u>0.9887</u>	0.9758	0.9273	<u>0.7972</u>
Masked Per-level classifier	0.9173	0.9828	0.9701	0.9233	0.7930
Hierarchical-softmax	0.9180	0.9879	0.9731	0.9253	0.7855
Order-prese	rving (joi	nt) embedo	ding model	S	
Euclidean cones d=100	0.8350	0.9728	0.9370	0.8336	0.5967
Hyperbolic cones d=100*	0.7627	0.9695	0.9205	0.7523	0.4246
Hyperbolic cones d=100	0.8404	0.9800	0.9439	0.8477	0.5977

Labels initialized w/ pre-trained *label-only* embeddings

Contributions

- Compared methods that exploit label-hierarchy knowledge
- Provide a reasonable model that can be used by Entomological collections
- Order-preserving embeddings show promise for computer vision

Future Directions

- Validate performance with other datasets with hierarchical labels
- Submit work to a conference

- Applications: Visual-Question Answering, Scene-graph generation = joint modeling of semantics and visual cues
- Label accuracy vs. label specificity: predict more generic if unsure about a more specific label (*eg: mammal* instead of *dog*)
- Model complexity to map images to embedding space

Thank you for your attention!

1000-dimensional Hyperbolic cones projected in 2D.

species

family

subfamily

genus

Additional material

ETH Entomological Collection (ETHEC)

- 2,000,000+ specimens; one of the largest insect collections in Europe
- New specimens need to be digitized and organized taxonomically
- Classification requires specialists and is expensive

- Dataset with images and their corresponding hierarchical labels
- 47,978 butterfly images with a 4-level label-hierarchy
- 6 family -> 21 sub-family -> 135 genus -> 561 species
- Unbalanced tree & non-uniform image distribution among labels
- Each image has an associated label from each level in the hierarchy

Dataset has been made publicly available here: https://www.research-collection.ethz.ch/handle/20.500.11850/365379

Hierarchy-agnostic model

- Per-class decision boundary vs. One-fits-all decision boundary
- Loss-reweighting and data resampling

Hierarchy-agnostic model | family, subfamily

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Hierarchy-agnostic model | family, subfamily

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Hierarchy-agnostic model

cw	rs	m-P	m-R	m-F1	M-P	M-R	M-F1	(min, max), $\mu \pm \sigma$		
			Re	esNet-50	- Per-clas	s decision	n bound <i>a</i>	ry		
X	X	0.0355	0.7232	0.0677	0.3066	0.4053	0.2195	$(3, 351), 81.42 \pm 69.51$		
X	1	0.7159	0.7543	0.7346	0.4402	0.4362	0.3718	$(0, 13), 4.21 \pm 2.07$		
1	X	0.0077	0.8702	0.0153	0.0120	0.8397	0.0183	$(84, 718), 451.14 \pm 136.69$		
1	1	0.0081	0.7519	0.0161	0.0105	0.5909	0.0165	$(33, 714), 369.96 \pm 120.55$		
			Res	Net-50 -	One-fits-a	all decision	on bound	lary		
X	X	0.9324	0.7235	0.8147	0.1913	0.1462	0.1568	$(0, 7), 3.10 \pm 1.16$		
X	1	0.9500	0.6564	0.7763	0.1078	0.0947	0.0959	$(0, 5), 2.76 \pm 0.60$		
1	X	0.2488	0.2960	0.2704	0.0021	0.0067	0.0030	$(4, 9), 4.76 \pm 0.76$		
1	1	0.1966	0.3800	0.2591	0.0027	0.0110	0.0037	(4, 10), 7.73 \pm 0.61		

Level	Ni	m-P	m-R	m-F1	M-P	M-R	M-F1	
ResNet-50 (OFADB) with resampler (cw: X , rs: X)								
family	6	0.9861	0.9012	0.9417	0.9718	0.8801	0.9173	
subfamily	21	0.9860	0.9065	0.9446	0.7941	0.6548	0.6968	
genus	135	0.9290	0.7518	0.8311	0.3918	0.2961	0.3212	
genus + specific epithet	561	0.7249	0.3345	0.4578	0.1121	0.0832	0.0888	

Per-level classifier | *family, subfamily*

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Per-level classifier | genus, species

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Per-level classifier

CW	rs	m-P	m-R	m-F1	M-P	M-R	M-F1
			Re	sNet-50			
1	X	0.8483	0.8483	0.8483	0.6648	0.6789	0.6411
X	X	0.8930	0.8930	0.8930	0.6854	0.7094	0.6677
x	1	0.9084	0.9084	0.9084	0.7134	0.7223	0.6888
1	1	0.8760	0.8760	0.8760	0.6782	0.6874	0.6537
X	sqrt	0.9067	0.9067	0.9067	0.6941	0.7073	0.6700

Level	Ni	m-P	m-R	m-F1	M-P	M-R	M-F1	
ResNet-50 with resampler (cw: ✗, rs: ✓)								
family	6	0.9766	0.9766	0.9766	0.9005	0.9328	0.9152	
subfamily	21	0.9661	0.9661	0.9661	0.9433	0.9542	0.9424	
genus	135	0.9204	0.9204	0.9204	0.8845	0.8482	0.8497	
genus + specific epithet	561	0.7704	0.7704	0.7704	0.6616	0.6811	0.6382	

Marginalization

model	m-P	m-R	m-F1	M-P	M-R	M-F1				
Models trained using grayscale images										
ResNet-50	0.8586	0.8586	0.8586	0.6071	0.6070	0.5765				
M	Models trained using normal color images									
ResNet-50	0.9223	0.9223	0.9223	0.7095	0.7231	0.6927				
ResNet-101	0.9110	0.9110	0.9110	0.7327	0.7262	0.7023				
ResNet-152	0.9162	0.9162	0.9162	0.7181	0.7271	0.6954				

L_1	<i>L</i> ₂	L_3	L_4	m-F1	m-F1 L ₁	m-F1 <i>L</i> ₂	m-F1 <i>L</i> ₃	m-F1 L ₄	
ter	rm L	in lo	DSS	Per-level micro-F1					
			1	0.9137	0.9814	0.9638	0.9134	0.7962	
		1	1	0.9070	0.9774	0.9626	0.9077	0.7804	
	1	1	1	0.9207	0.9891	0.9733	0.9255	0.7948	
1	1	1	1	0.9223	0.9887	0.9758	0.9273	0.7972	

Masked Per-level classifier

model	m-P	m-R	m-F1	M-P	M-R	M-F1			
Models trained using grayscale images									
ResNet-50	0.8443	0.8443	0.8443	0.6002	0.5931	0.5619			
M	Models trained using normal color images								
ResNet-50	0.9173	0.9173	0.9173	0.7107	0.7227	0.6915			
ResNet-101	0.9169	0.9169	0.9169	0.7119	0.7260	0.6921			
ResNet-152	0.9152	0.9152	0.9152	0.7167	0.7281	0.6958			

Level	N _i	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50 Performance Breakdown							
family	6	0.9828	0.9828	0.9828	0.9735	0.9361	0.9495
subfamily	21	0.9701	0.9701	0.9701	0.9684	0.9252	0.9356
genus	135	0.9233	0.9233	0.9233	0.8916	0.8432	0.8525
genus + specific epithet	561	0.7930	0.7930	0.7930	0.6548	0.6838	0.6409

L_1	<i>L</i> ₂	L_3	L_4	m-F1	m-F1 L ₁	m-F1 <i>L</i> ₂	m-F1 <i>L</i> ₃	m-F1 L ₄		
term L_i in loss					Per-level micro-F1					
			1	0.0633	0.2325	0.0162	0.0022	0.0022		
		1	1	0.1043	0.3058	0.0410	0.0386	0.0319		
	1	1	1	0.0848	0.0970	0.0919	0.0879	0.0622		
1	1	1	1	0.9098	0.9808	0.9616	0.9116	0.7853		

Hierarchical Softmax

model	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50	0.9055	0.9055	0.9055	0.6899	0.7049	0.6723
ResNet-101	0.9122	0.9122	0.9122	0.7049	0.7072	0.6780
ResNet-152	0.9180	0.9180	0.9180	0.7119	0.7174	0.6869

Level	N _i	m-P	m-R	m-F1	M-P	M-R	M-F1	
ResNet-152 with Hierarchical Softmax — Performance Breakdown								
family	6	0.9879	0.9879	0.9879	0.9605	0.9452	0.9522	
subfamily	21	0.9731	0.9731	0.9731	0.9605	0.9452	0.9522	
genus	135	0.9253	0.9253	0.9253	0.8972	0.8504	0.8574	
genus + specific epithet	561	0.7855	0.7855	0.7855	0.6572	0.6756	0.6347	

Hierarchical Softmax | *family, subfamily*

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Hierarchical Softmax | genus, species

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)

Embedding toy-graphs

Embedding toy-graphs

Synthetic Trees (L=4,b=3)

2D Order-Embeddings

2D Euclidean Cones

Synthetic Trees (L=3,b=7)

2D Order-Embeddings

2D Euclidean Cones

Cosine Embeddings

- Use multi-level classifier CNN from the baseline
- Add a set of linear layers whose weights live in 2 dimensions
- One such layer for every level in the hierarchy
- These weights represent the latent space learned while being trained for image classification

Embedding Labels | Cosine Embeddings

Evolution of 2-dimensional Cosine Embeddings over time.

Inverted Cosine embeddings

 $x_{\text{inverted}} = \frac{r * x * ||x_{\text{max}}||}{|x_{\text{max}}||}$

|x|

Inverted Cosine Embeddings resemble the Euclidean cones.

Performance | Embedding labels only

Model	d=2	d=3	d=5	d=10	d=100
Order-embeddings	0.8271	0.9302	0.9457	0.9920	0.9920
Euclidean Cones	0.8550	0.9979	0.9593	0.9919	0.9752

- Micro-F1 score on test set consisting of +ve and -ve edges from DAG
- DAG represents label-hierarchy in the ETHEC dataset

Training details | Joint embeddings

- alpha: EC=1.0, HC=0.1
- EC: 200 epochs, lr_img=10^-3, lr_labels=10^-2 with Adam
- HC: 100 epochs, lr_img=10^-3, lr_labels=10^-4 with Adam
- 10 negative (=5*(u, v') + 5*(u', v)) per positive with pick-per-level strategy
- Initialize the labels with the labels-only training
- For HC use Adam over RSGD -> converging faster, better performance